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Abstract. One class of min-sum-min problems is discussed in the paper. Min-sum-min
problems appear in a natural way in many applications (e.g., in cluster analysis, pattern
recognition, classification theory etc.). Like min-max-min problems, min-sum-min problems
represent a very important family of nonsmooth problems. Problems of this type can be
treated by means of the existing tools of Nonsmooth Analysis. However, most of algorithms
available provide a local minimizer only, since they are based on necessary conditions which
are of local nature. In the paper it is proved that the original problem can be reduced to the
problem of minimizing a finite number of sum-functions. A necessary condition for a global
minimum and a sufficient condition for a local minimum are stated. The necessary condition
is of nonlocal nature. An algorithm (so-called Exchange algorithm) for finding points, satis-
fying necessary conditions, is described. An ε-Exchange algorithm is formulated, allowing,
in principle, to escape from a ‘shallow’ local minimizer. An example is presented to illus-
trate the results and algorithms. An application of the proposed algorithms to solving one
clustering problem is also given. Numerical results are provided.

AMS Subject Classifications: 90C30, 49J40.
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1. Introduction and Statement of the Problem

In this paper we are concerned with the following problem:
Let sets I ={1, . . . ,N} and Ji ={1, . . . ,mi}, i ∈ I , be given, where N and

mi are positive integers. Define the function

F(x)=
∑

i∈I

min
k∈Ji

ϕik(x),

where x ∈R
n, ϕik: Rn →R (n∈N).

PROBLEM P. Find a point x∗ ∈�, such that

F(x∗)=min
x∈�

F(x),

where �⊂R
n. That is, it is required to find a minimizer of the functional

F on the set �.
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Min-sum-min problems appear in a natural way in many applications
(e.g., in cluster analysis, pattern recognition, classification theory etc., see
(Bagirov et al., 1999; Bagirov, Rubinov and Yearwood, 2002; Bagirov,
Rubinov and Yearwood, 2001). Like min-max-min problems, min-sum-min
problems represent a very important family of nonsmooth problems.

Problems of this type can be treated by means of the existing tools of
Nonsmooth Analysis (see, e.g. (Pardalos and Resende, 2002)). However,
most of algorithms available provide a local minimizer only, since they are
based on necessary conditions which are of local nature. In particular, it
is very difficult to overcome some ‘specific’ obstacles, which are the main
features of this class of problems:

– Essential nonsmoothness (even if ϕik’s are smooth)
– Large number of ‘shallow’ local minimizers.

As it will be shown below by examples, even if the functions ϕik’s are
‘very good’ (say, real-analytic), it doesn’t help in any way to solve this
problem.

An important property of sum-min functions to be exploited here is that
the problem of minimizing such a function can be reduced to solving a
finite (though maybe very large) number of relatively simple min-sum-type
problems. Similar property holds for min-max-min problems (Vershik,
Malozemov and Pevnyi, 1975) and was crucial for developing numerical
algorithms in (Demyanov, 2003; Demyanov, 2002; Demyanov, Demyanov
and Malozemov, 2002).

In this paper we will describe a new approach to solving such problems.
Obviously, we will need to assume some properties of the functions under
consideration – in particular, even though the optimality condition does
not require anything from the functions ϕik’s, for constructing numerical
methods for finding minimizers, we will suppose that we are able to solve
a ‘more simple’ kind of problem, involving ϕik’s.

One problem of this type was discussed in (Demyanov, 2003). Namely,
the case where |Ji |= 2 and the functions ϕik are of the form ϕik(xk), with
x = (x1, x2)∈R

n1 ×R
n2, n1 +n2 =n.

The Paper is organized as follows: In Section 2 an equivalent formu-
lation of the problem is given. It is proved that the original problem is
reduced to the problem of minimizing a finite number of sum-functions. A
necessary condition for a global minimum and a sufficient condition for a
local minimum are stated in Section 3. The necessary condition is of nonlo-
cal nature. An algorithm (so-called Exchange algorithm) for finding points,
satisfying necessary conditions, is described in Section 4. In Section 5 an
ε-Exchange algorithm is formulated. Using this algorithm it is possible,
in principle, to escape from a ‘shallow’ local minimizer. An example is
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presented in Section 6 to illustrate the results and algorithms. An applica-
tion of the proposed algorithms to solving one clustering problem is shown
in Section 7. Numerical results are also provided.

2. An Equivalent Problem Formulation

So, our aim is to find a minimizer of F on the set �⊂R
n. Put

J =J1 ×· · ·×JN

and for every j = (j1, . . . , jN)∈J let us introduce the function

Fj(x)=
∑

i∈I

ϕiji
(x). (1)

Evidently,

F(x)≤Fj(x), (2)

for every j ∈J .
Let us formulate another

PROBLEM P1. Find j ∗ ∈J such that

inf
x∈�

Fj∗(x)=min
j∈J

inf
x∈�

Fj .

Now we will prove, that the Problem P is equivalent to the Problem P1.

THEOREM 1. The following equality is valid:

inf
x∈�

F(x)=min
j∈J

inf
x∈�

Fj(x). (3)

Proof. From (2) for every x ∈� we have

inf
x∈�

F(x)≤ inf
x∈�

Fj(x) (4)

for each j = (j1, . . . , jN) ∈ J . Since it is true for an arbitrary j ∈ J , (4)
implies

inf
x∈�

F(x)≤min
j∈J

inf
x∈�

Fj(x). (5)

Now let us take an arbitrary x ∈�. Put j (x̄)= (j1(x̄), . . . , jN(x̄)), where
ji(x)∈Ji are such that
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ϕiji(x̄)(x̄)=min
k∈Ji

ϕik(x̄).

Then

F(x̄)=
∑

i∈I

ϕiji (x̄)(x̄)=Fj(x̄)(x̄)≥ inf
x∈�

Fj(x̄)(x)≥min
j∈J

inf
x∈�

Fj(x).

This inequality is valid for an arbitrary x̄ ∈� and we have

inf
x∈�

F(x)≥min
j∈J

inf
x∈�

Fj(x). (6)

The inequalities (5) and (6) imply (3).

This theorem has two remarkable consequences:

1. It shows, that the global minimizer of F on the set � exists, by modulo
of existence of a minimizer of the function Fj on �, for all j ∈J .

2. Due to (3) the problem of minimizing the functional F is reduced to
solving a finite number of problems of minimizing functions of the form
(1). So, we have proved that if we are able to minimize functions of the
type (1), then in principle it is possible to solve the Problem P by solv-
ing the problem of minimizing Fj for each j ∈J . However, in real appli-
cations the number

|J |=
∏

i∈I

|Ji |=
∏

i∈I

mi (7)

is quite large and it is practically impossible to use this equivalence
directly. However, making use of this result, we will develop some meth-
ods for finding local minimizers of the functional F .

3. A Necessary Condition for a Global Minimum and a Sufficient
Condition for a Local Minimum

Let x ∈R
n. Consider the set of active indices at the point x, defined in the

following way:

J (x,0)={j ∈J |ϕiji
(x)=min

k∈Ji

ϕik(x)∀i ∈ I }⊂J. (8)

It is easy to see, that

Fj(x)=
∑

i∈I

ϕiji
(x)=F(x) ∀j ∈J (x,0). (9)
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THEOREM 2. For a point x∗ ∈� to be a global minimizer of F on the set
� it is necessary that

inf
x∈�

Fj(x)=F(x∗)∀j ∈J (x∗,0). (10)

If at some point x∗ ∈� condition (10) holds and ϕik ∈C(�), then x∗ is a
local minimizer of F on �.

Proof. Necessity. We have

inf
x∈�

Fj(x)≤Fj(x
∗)=F(x∗)∀x∗ ∈�, ∀j ∈J (x∗,0). (11)

Since x∗ is a global minimizer of F on the set �, condition (2) implies that

inf
x∈�

Fj(x)≥ inf
x∈�

F(x)=F(x∗). (12)

Thus, equality (10) follows from (11) and (12).
Sufficiency. Suppose, that condition (10) holds, and the point x∗ is not

a local minimizer of F on the set �. Then for any δ > 0 there exists xδ ∈
B(x∗, δ)∩�, such that F(xδ)<F(x∗). We have

F(xδ)=Fj(δ)(xδ)=
∑

i∈I

ϕiji (δ)(xδ),

where j (δ) = (j1(δ), . . . , jn(δ)) ∈ J (xδ,0). Since ϕik are continuous on �,
then the inclusion J (xδ,0) ⊂ J (x∗,0) holds for all xδ ∈ B(x∗, δ) ∩ � if δ is
small enough. Thus, j (δ)∈J (x∗,0). Hence, we get

inf
x∈�

Fj(δ)(x)≤Fj(δ)(xδ)<F(x∗),

which contradicts (10). The theorem is proved.

Condition (10) is a necessary condition for a point to be a global min-
imizer and a sufficient condition for a local minimum of the functional F

on the set �. A point x∗ ∈� satisfying condition (10) is called a stationary
point of F on �. Note, that this condition is of a nonlocal nature. Though
this theorem implies that each stationary point is a local minimizer, the
converse is not true: not every local minimizer is a stationary point (see
Section 6, Remark 4).

4. An Exchange Algorithm

In this section we will construct a method for finding stationary points,
based on the necessary and sufficient condition for a minimum.
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Suppose, that ϕik ∈C(�) and for every j ∈J there exists (and we are able
to find it) a point xj ∈� such that

Fj(xj )=min
x∈�

Fj(x).

Condition (10) leads us to the following algorithm:

1. Choose an arbitrary u0 ∈�.
2. Let a point us ∈� be given.
3. Construct the set J (us,0) and for every j ∈ J (us,0) check whether

condition (10) is satisfied, that is, check the equality

Fj(xj )=F(us). (13)

– If it holds for all j ∈J (us,0) then the point us is a local minimizer
of F on � and the algorithm terminates.

– Otherwise, there exists j ∗ ∈J (us,0)⊂J , such that

min
x∈�

Fj∗(x)=Fj∗(xj∗)<F(us). (14)

Put us+1 =xj∗ . The inequalities (2) and (14) yield

F(us+1)≤Fj∗(us+1)<F(us). (15)

Go to step 2.
Since the number of points in the set J is finite, inequality (15) implies

that the algorithm terminates in a finite number of steps, resulting in a sta-
tionary point u∗ ∈� (which is a local minimizer of F ).

Remark 1. The algorithm described above can be used, if at every step
the number |J (us,0)| is substantially less then |J |. That is, to check the
minimality condition we will not need to solve a large number of problems
of minimizing the functions Fj ’s.

5. An ε-Exchange Algorithm

An Exchange algorithm allows us to find a stationary point (which is a
local minimizer) of F in a finite number of steps. However, the functional
F may possess a huge number of local minimizers on the set �, and even
though the definition of a stationary point removes some of them from
our consideration (since not every local minimizer is a stationary point), we
need some more efficient methods to ‘improve’ the minimizer. The follow-
ing method allows us to ‘leave’ a local minimizer and to find a ‘better’ one
(in the sense of minimizing F ).
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Again, we will assume that ϕik ∈C(�) and we are able to solve the prob-
lem of minimizing the function Fj (as in (1)), for every j ∈J .

1. Fix ε >0. Let v0 ∈� be a stationary point. Construct the set of ε-active
indices J (v0, ε) at the point v0 as follows:

J (v0, ε)={j ∈J |ϕiji
(v0)≤min

k∈Ji

ϕik(v0)+ ε ∀i ∈ I }.

For each j ∈J (v0, ε) let us find a point xj , such that

min
x∈�

Fj(x)=Fj(xj ). (16)

2. Let a stationary point vt ∈� be given.

– If

min
j∈J (vt ,ε)

Fj (xj )=F(vt ), (17)

then the algorithm terminates. A point vt , satisfying (17), is called an
ε-local minimizer of F on the set �.

– If

min
j∈J (v0,ε)

Fj (xj )=Fj(ε)(xj (ε))<F(vt ),

then applying the Exchange Algorithm with xj(ε) as the initial point,
in a finite number of steps we obtain a stationary point vt+1 ∈�, and

F(vt+1)≤F(xj(ε))≤Fj(ε)(xj (ε))<F(vt ).

Again, since |J | is finite, the algorithm terminates in a finite number of
steps.

Remark 2. Note, that taking ε quite large we obtain J (v, ε)=J . In this
case the checking of ε-minimality is equivalent to the solution of the Prob-
lem P1 (see Theorem 1).

Remark 3. While executing the Exchange or the ε-Exchange Algorithm,
at every step we need to check conditions (13) and (17) respectively. How-
ever, note, that to prove that a point is not a stationary point (or ε-local
minimizer), we don’t need the precise solution of these problems. If, for
example, the problem of minimizing Fj ’s is complicated from the numerical
point of view, it is sufficient to find only one index j and one point x(j),
such that the value of Fj(x(j)) is strictly less then the value of F at the
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given point. Therefore, the following strategy can be adopted: at first steps
of the algorithms we use some rough method, just to find a point, which
delivers strictly smaller value to F , not spending much efforts for this, and
later we start using more sophisticated methods for finding precise values
of minx∈� Fj(x).

As it was mentioned before, this problem is essentially nonsmooth and
extremely multi-extremal. We have made several steps to become able to
solve this type of problems:

1. The definition of a stationary point excludes some local minimizers
from our considerations (since not every local minimizer is a station-
ary point). It allows one to avoid considering some of ‘shallow’ local
minimizers.

2. The Exchange Algorithm can be used for finding stationary points.
3. The ε-Exchange Algorithm can be used to find a better local minimizer

by extending the set of active indices. By varying ε we can balance
between the ‘depth’ of the search and the ‘quality’ of the minimizer.

6. An Example

To illustrate the described method let us consider the following example.
Let �=R, I ={1}, J1 ={1,2}, that is the functional F has the form

F(x)=min
k∈J1

ϕ1k(x),

where

ϕ11(x)= 1
2
x(x +2)(x −2)2, ϕ12(x)=10(x −1)(x +1).

Let u0 = 2, it is easy to see (Figure 1) that u0 is a local minimizer of
F on �. Let us check the condition (10): J (u0,0)={1}, since ϕ11(u0)=0,

ϕ12(u0)=30. Thus, F1(x)=ϕ11(x). Since

inf
x∈R

F1(x)=F1(x1)<−4<0=F(u0), (18)

where x1 = 1
4 (−1−√

17), we conclude that the condition (10) fails to hold,
and therefore u0 is not a stationary point.

Remark 4. The above example reveals the fact that though a stationary
point is a local minimizer (for continuous functions), the converse is not
true: not every local minimizer is a stationary point.
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Figure 1. F, ϕ11 and ϕ12.

Now, according to the Exchange Algorithm, we will check whether the
point u1 = x1 satisfies the optimality condition. We have J (u1,0)={1} and
hence the condition (10) and the equality (18) imply that u1 is a stationary
point for the functional F on the set � (see Figure 1).

In order to escape from this local minimizer, let us apply the ε-Exchange
Algorithm.

Put ε =13, v0 =u1. We have J (v0, ε)={1,2}. So, F1(x)=ϕ11(x), F2(x)=
ϕ12(x). However, since

inf
x∈R

F2(x)=F2(v1)=−10<−5<F(v0), (19)

where v1 =0, we conclude that v0 is not an ε-local minimizer for ε =13.
It is easy to see that since J (v1, ε)={1,2}, the equality (19) implies that

v1 is an ε-local minimizer for F on the set � for ε =13.
It is easy to see that v1 is an ε-local minimizer of F for every ε > 0, so

one concludes that v1 is a global minimizer for F on R.

Remark 5. This example illustrates, that even if the functions ϕij ’s are
analytic, it doesn’t make the problem of minimizing F much easier. Nice
properties that ϕij ’s enjoy can help minimizing Fj ’s, but the condition (10)
still needs to be checked.
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7. An Application to Clustering Problems

Let a set of points {t1, . . . , tN }⊂R
n be given. Let I ={1, . . . ,N}, Ji ={1,2,3}

for all i ∈ I , and x = (x1, x2, x3)∈�=R
n ×R

n ×R
n. Introduce the functions

ϕi1(x)=‖ti −x1‖2, ϕi2(x)=‖ti −x2‖2, ϕi3(x)=‖ti −x3‖2

where ‖x‖2 =〈x, x〉.
Note that ϕik’s are continuously differentiable and convex. Consider the

following clustering problem.

PROBLEM CP. Find x∗ = (x∗1, x∗2, x∗3)∈�=R
n ×R

n ×R
n such that

F(x∗)=min
x∈�

F(x),

where

F(x)=
∑

i∈I

min
k∈Ji

ϕik(x).

Take any j ∈ J = J1 × · · · × JN , then the functions Fj(x), defined in (1)
take the form

Fj(x)=
∑

i∈I

ϕiji
(x)=

∑

i∈σ1(j)

ϕi1(x)+
∑

i∈σ2(j)

ϕi2(x)+
∑

i∈σ3(j)

ϕi3(x),

where

σk(j)={i ∈ I | ji =k}, k =1,2,3.

Clearly,

min
x∈�

Fj(x)=Fj(xj ), (20)

where xj = (x1(j), x2(j), x3(j)), and

xk(j)= 1
|σk(j)|

∑

i∈σk(j)

ti . (21)

Remark 6. Often in clustering problems the following functional is con-
sidered:

F(x)=
∑

i∈I

min
k∈Ji

ϕik(x),
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where

ϕik(x)=‖ti −xk‖.

We use ϕik =‖ti −xk‖2, since in this case we have the explicit formula (21)
for finding minimizers of Fj ’s. That is, we don’t need to spend much efforts
for minimizing Fj ’s, while solving the problem of minimizing F .

7.1. EXAMPLE

Let the set of points {t1, . . . , t41}⊂R
2 be as shown in Table I. We have to

find 3 clusters x1, x2, x3 ∈R
2 which minimize the functional

F(x)=
∑

i∈I

min{‖ti −x1‖2, ‖ti −x2‖2, ‖ti −x3‖2},

where I ={1, . . . ,41}. Here ϕik =‖ti −xk‖2 and Ji ={1,2,3} for all i ∈ I .
First, let us solve 1-cluster problem

min
x∈R2

F1(x)=F1(y
∗),

where

F1(x)=
∑

i∈I

‖ti −x‖2.

From (21) it follows that y∗ = (3.8902,5.6098) and F1(y
∗)=200.432.

Table I. The set of points {t1, . . . , t41}⊂R
2

i ti i ti i ti i ti i ti

1 (2, 6) 9 (7, 2) 17 (4, 7) 25 (2, 1) 33 (1.5, 6)
2 (1, 6) 10 (6, 3) 18 (6, 7) 26 (2, 0) 34 (2.5, 6)
3 (3, 5) 11 (6, 1) 19 (6, 6) 27 (1, 5) 35 (5.5, 8)
4 (2, 7) 12 (5, 3) 20 (4, 5) 28 (2, 8) 36 (4.5, 8)
5 (2, 5) 13 (7, 3) 21 (4, 6) 29 (4, 9) 37 (4.5, 7)
6 (3, 5) 14 (5, 7) 22 (1, 7) 30 (5, 9) 38 (5.5, 7)
7 (6, 2) 15 (5, 8) 23 (1, 8) 31 (1.5, 5) 39 (6, 9)
8 (5, 2) 16 (5, 6) 24 (2, 2) 32 (2.5, 5) 40 (5.5, 9)

41 (6, 8)
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1 ← center of the first cluster

2 ← center of the second cluster

3 ← center of the third cluster

← points in the first cluster

← points in the second cluster

← points in the third cluster

← common points

Figure 2. The legend.

At the first sight, it seems interesting to put u0 = (y∗, y∗, y∗)∈R
2 ×R

2 ×R
2

as the initial point for applying the Exchange Algorithm. However, in this
case J (u0,0)= J = J1 × · · ·× J41, so just to check the optimality condition
(10) it is necessary to solve |J |=341 problems of minimizing functions Fj ’s,
which is impossible.

That is why we will slightly move the centers: say, let’s take u0 = (u1
0, u

2
0, u

3
0),

with u1
0 = y∗, u2

0 = y∗ +�1 and u3
0 = y∗ +�2, where �1 = (0.1,0) and �2 =

(−0.1,0.1).
Starting the Exchange Algorithm, in 5 steps we obtain a stationary point

u1 = (u1
1, u

2
1, u

3
1), with u1

1 = (2,1), u2
1 = (6,2.2857), u3

1 = (3.5968,6.8065).
The function value is F(u1) = 155.477. The results of application of the
Exchange Algorithm are depicted in Figure 3.

The notations used in the Figures are explained in Figure 2. Common
points denote the points, whose indices generate the set of ε-active indices
J (v, ε).

Now put ε = 8 and let us take v0 = u1 as the initial point for the
ε-Exchange Algorithm. t27 and t19 are the ε-common points, that is the
indices {19,27} generate the set of ε-active indices J (v0,8).

At the first iteration of ε-Exchange algorithm we obtained the point
v1 = (v1

1, v
2
1, v

3
1), where v1

1 = (2,6), v2
1 = (4.8,1.9), v3

1 = (5.0938,7.5625) with
F(v1)=99.547. The situation is illustrated in Figure 4.
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Figure 3. The results of the Exchange algorithm, F(u1)=155.47
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Figure 4. The first iteration of the ε-Exchange algorithm, F(v1)=99.547
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Figure 5. An ε-local minimizer v2 for ε =8 with F(v2)=99.417

At the second iteration of the algorithm we get the point v2 = (v1
2, v

2
2, v

3
2)

where v1
2 = (2.125,6), v2

2 = (4.8,1.9), v3
2 = (5.1667,7.6667) with F(v2) =

99.417. This point is an ε-local minimizer of F for ε=8. The resulting clus-
ters are shown in Figure 5.

7.2. NUMERICAL RESULTS

We have applied the described algorithm to several datasets: Cleveland
Heart Disease (Heart) and Diabetes. The results of 10-fold validation are
depicted in Table II.

1. Cleveland Heart Decease Database. We have chosen 6 features, and
solved 3-cluster problem. We obtained 3 clusters, and then we say that
the cluster is ‘of the 1st type’, if the points from the 1st set dominate. In
the Table III you can see the detailed description of what we obtained
when applied the Exchange algorithm to the whole set. As you can see,
in the 1st cluster the points from the second set dominate, but 17 of 74
points are misidentified. It means that, if we have a new point (that is,
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Table II. Numerical results

Heart Diabetes

Dataset size 297 768
Dataset dimension 13 8
Number of clusters 3 6
10-fold training set correctness, % 82.98 76.45
10-fold testing set correctness, % 82.95 76.33

Table III. Heart results

Cluster number 1 2 3
Type of the cluster 2 2 1
Size of the cluster 74 65 158
Number of misidentified points 17 8 23
Percentage of misidentified points 23% 12% 15%

we have to make a diagnosis), and if it proves to be in the 1st cluster,
then it is very probable (since the error is 23 percent) that this point is
also from the 2nd set.

The total number of misidentified points is 48 (that is, the overall
accuracy is 83.84 percents), and after 10-fold validation we obtained
what is described in the Table II.

2. Diabetes Database.
In this case we were looking for 6 clusters. As it is shown it Table IV,
the 2nd cluster contains mainly the points of the 1st type (7% of mis-

Table IV. Diabetes results

Cluster number 1 2 3 4 5 6
Type of the cluster 1 1 2 1 1 2
Size of the cluster 172 149 95 187 97 68
Number of misidentified points 70 11 18 54 8 20
Percentage of misidentified points 41% 7% 19% 29% 8% 29%
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identified points), while the 1st cluster contains 41% of misidentified
points, though the points of the 1st type dominate. In principle, this
additional information can be used for stating the diagnosis: that is, if
a new point belongs to the 2nd cluster, then it is very probable, that it
is of the 1st type. At the same time, if a new point is in the 1st cluster,
we are not so sure about it.

The results obtained are comparable with those reported in (Astorino
and Gaudioso, 2002; Bazirov, Rubinov and Yearwood, 2002; Bagirov, Rubi-
nov and Yearwood, 2001).

8. Concluding Remarks

Thus, we have derived necessary and sufficient conditions for a point to
be a minimizer of the sum-min function. Based on these conditions we
became able to construct some numerical methods for solving min-sum-min
problems.

To check practical efficiency of the proposed algorithms, we applied
these methods to the problems of cluster analysis.

On several datasets, containing up to 1.000 points (Diabetes and Heart
disease datasets) they demonstrated quite a competitive performance, and
we believe that these ideas can be employed for solving different large-scale
problems. That is, the problems where the function under consideration
involves summation over several hundreds or thousands min-functions.
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